We describe results from a Monte-Carlo simulation of Bell-CHSH type correlations in hydrodynamic walkers. We study feasibility of a real life walker test with relevant hydrodynamic parametric ranges. We observe the generic formation of pairs of walkers strongly anti-correlated both in position and momentum. With this source of entangled walkers, we model the insertion of 2 pins in the bath as a notion of measure, akin to the polarizers of photonic Bell tests. This insertion of pins, either static or dynamic, introduces 2 weak field signals. Each field has the physical form of a standing wave Bessel hat, representing the non-local (field mediated) influences of the measure on the walkers. With this representation of the measure, we develop protocol for a Bell game with actual hydrodynamic walkers. We model both static and dynamic insertion of pins in the walker bath. Static pins give us numerical S > 2, as a permissible Bell violation for a non-local (field based) effect. Dynamic insertion of the pins, however, leads to causal space separation of the two arms. We observe the again expected S ≤ 2. We argue for the hydrodynamic implementation and observation of these effects as a walker visualization of Bell inequalities.
Keywords:
Subject: Physical Sciences - Fluids and Plasmas Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.