Preprint
Article

Impact of Plug-in Electric Vehicles Integrated into Power Distribution System based on Voltage Dependent Power Flow

Altmetrics

Downloads

807

Views

343

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 May 2018

Posted:

17 May 2018

You are already at the latest version

Alerts
Abstract
This paper proposes the impact of plug-in electric vehicles integrated into power distribution system based on voltage dependent control. The plug-in electric vehicles was modeled as the static load model in power distribution systems under balanced load condition. The power flow analysis is determined by using the basic parameters of the electrical network. The main point of this study are compare with voltage magnitude profiles, load voltage deviation, and total power losses of the electrical power system. There are investigating the affected from constant power load, constant current load, constant impedance load and plug-in electric vehicles load, respectively. The IEEE 33 bus test system is used to test the proposed method by assigning each load type to a balanced load in steady state and applied the solving methodology based on the bus injection to branch injection matric, branch current to bus voltage matrix, and current injection matrix to solve the power flow problem. The simulation results showed that the plug-in electric vehicles load had the lowest impact compared to other loads. The lowest plug-in values for the electric vehicle loads were 0.062, 119.67 kW and 79.31 kVar for the load voltage deviation, total active power loss and total reactive power loss, respectively. Therefore, this study can be verified that the plug-in electric vehicles load were affected to the lowest of the electrical power system in condition to same sizing and position. So that, in condition to the plug-in electric vehicles load added into the electrical power system with the conventional load type or complex load type could be considered that the affected from the plug-in electric vehicles load in next study.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated