Glycoside Hydrolase 3 (GH3) is a phytohormone-responsive family of genes that has been found in many plant species. It is implicated in the biological activity of indolacetic (IAA) and jasmonic acids (JA), and also affects plant growth and developmental processes and some stresses. In this study, GH3 genes were identified in 48 plants, which belong to algae, moss, fern, gymnosperm and angiosperm. No GH3 representative gene has been found in algae, and our research identified 4 genes in mosses, 19 in ferns, 7 in gymnosperms, and numerous in Angiosperms. The results showed that GH3 genes mainly occur in seed plants. Phylogenetic analysis of all GH3 genes showed three separate clades. Group I was related to JA adenylation, group II was related to IAA adenylation, and group III was separated from group II but the function was not clear. The structure of GH3 protein indicated highly conserved sequence in the plant kingdom. The analysis of JA-adenylation related to gene expression of GH3 in potato (Solanum tuberosum) showed that StGH3.12 highly responded to Methyl Jasmonate (MeJA) treatment. Expression levels of StGH3.1, StGH3.11, and StGH3.12 were high in flower and StGH3.11 expression was also high in stolon. Our research revealed the evolution of the GH3 family, which is useful for studying the precise function about JA-adenylation GH3 genes in S. tuberosum under development and biotic stresses.
Keywords:
Subject: Biology and Life Sciences - Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.