Preprint
Article

On a Class of Hermite-Obrechkoff One-Step Methods with Continuous Spline Extension

Altmetrics

Downloads

538

Views

348

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 May 2018

Posted:

24 May 2018

You are already at the latest version

Alerts
Abstract
The class of A-stable symmetric one-step Hermite-Obrechkoff (HO) methods introduced in [1] for dealing with Initial Value Problems is analyzed. Such schemes have the peculiarity of admitting a multiple knot spline extension collocating the differential equation at the mesh points. As a new result, it is shown that these maximal order schemes are conjugate symplectic which is a benefit when the methods have to be applied to Hamiltonian problems. Furthermore a new efficient approach for the computation of the spline extension is introduced, adopting the same strategy developed in [2] for the BS linear multistep methods. The performances of the schemes are tested in particular on some Hamiltonian benchmarks and compared with those of the Gauss Runge-Kutta schemes and Euler-Maclaurin formulas of the same order.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated