Preprint
Article

A Quantitative Structure-activity Relationships Model Based on Hybrid Artificial Intelligence Methods and its Application

Altmetrics

Downloads

654

Views

511

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 May 2018

Posted:

31 May 2018

You are already at the latest version

Alerts
Abstract
Quantitative structure-activity relationship (QSAR) model is adopted to study the relationship between the chemical and physical properties of various substances and the structure. Through QSAR studies, the internal relationship between the invisible structure and the activity can be obtained. In this paper, a novel chaos-enhanced accelerate particle swarm algorithm (CAPSO) is proposed, which is used to molecular descriptors screening and optimization of the weights of back propagation artificial neural network (BP ANN). Then, the QSAR model based on CAPSO and BP ANN is put forward, hereinafter referred to as CAPSO BP ANN model. The prediction experiment showed that the CAPSO algorithm is a reliable method for screening molecular descriptors and the five molecular descriptors obtained by CAPSO algorithm could well characterize the molecular structure of each compound in pKa prediction. The experimental results also showed the CAPSO BP ANN model has a good performance in predicting the pKa values of various compounds, the absolute mean relative error, root mean square error, and square correlation coefficient are respectively 0.5364, 0.0632, and 0.9438, indicating the higher prediction accuracy and correlation. The proposed hybrid intelligent model can be applied in all kinds of engineering design, prediction of physical and chemical properties and intelligent calculation.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated