Preprint
Article

Normal Calculus on Moving Surfaces

Altmetrics

Downloads

897

Views

465

Comments

0

This version is not peer-reviewed

Submitted:

06 June 2018

Posted:

11 June 2018

You are already at the latest version

Alerts
Abstract
This paper presents an extension for principles of Differential Geometry on Surfaces (re-hashed through the budding field of CMS, the Calculus of Moving Surfaces). It analyzes mostly 2D Hypersurfaces with Riemannian Geometry and proposes the construction of a 3D Static Frame combining the Surface Basis Vectors with the Orthogonal Normal Field as a 3D Orthogonal Vector Frame. The paper introduces conventions for manipulating Tensors defined using this 3D Orthogonal Vector Frame as well as Curvature Connections associated with this Vector Frame. It then finally introduces Symbols and Tensors to describe Inner Products and Variance within the 3D Vector Frame and then extends all the above concepts to a surface which is Dynamic utilizing principles from CMS. This formulation has potential to extend identities and concepts from CMS and from Differential Geometry in a compact Tensorial Framework, which agrees with the new Framework proposed by CMS.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated