Preprint
Article

Combination of Aronia, Red Ginseng and Shiitake Mushroom Potentiated Insulin Secretion and Reduced Insulin Resistance with Improving Gut Microbiome Dysbiosis in Insulin Deficient Type 2 Diabetic Rats

Altmetrics

Downloads

522

Views

486

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 June 2018

Posted:

12 June 2018

You are already at the latest version

Alerts
Abstract
The combination of freeze-dried aronia, red ginseng, ultraviolet-irradiated shiitake mushroom and natokinase (AGM; 3.4: 4.1: 2.4: 0.1) was examined to evaluate its effects on insulin resistance, insulin secretion and gut microbiome in a non-obese type 2 diabetic animal model. Pancreatectomized (Px) rats were provided high fat diets supplemented with either of 1) 0.5 g AGM (AGM-L), 2) 1 g AGM (AGM-H), 3) 1 g dextrin (control), or 4) 1g dextrin with 120 mg metformin (positive-control) per kg body weight for 12 weeks. AGM (1 g) contained 6.22 mg cyanidin-3-galactose, 2.5 mg ginsenoside Rg3 and 0.6 mg β-glucan. Px rats had decreased bone mineral density in the lumbar spine and femur and lean body mass in the hip and leg compared to the normal-control and AGM-L and AGM-H prevented the decrease. Visceral fat mass was lower in the control group than the normal-control group and its decrease was smaller by AGM-L and AGM-H. HOMA-IR was lower in descending order of the control, positive-control, AGM-L, AGM-H and normal-control groups. Glucose tolerance was deteriorated in the control group and it was improved by AGM-L and AGM-H more than in the positive-control group. Glucose tolerance is associated with insulin resistance and insulin secretion. Insulin tolerance indicated insulin resistance was highly impaired in diabetic rats, but it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Insulin secretion capacity, measured by hyperglycemic clamp, was much lower in the control group than the normal-control group and it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Diabetes modulated the composition of gut microbiome and AMG prevented the modulation of gut microbiome. In conclusion, AGM improved glucose metabolism by potentiating insulin secretion and reducing insulin resistance in insulin deficient type 2 diabetic rats. The improvement of diabetic status alleviated body composition changes and prevented changes of gut microbiome composition.
Keywords: 
Subject: Biology and Life Sciences  -   Endocrinology and Metabolism
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated