Preprint
Article

An Ultra-Low-Power Bit-Serial Variable-Accuracy FFT Processor

Altmetrics

Downloads

653

Views

338

Comments

0

This version is not peer-reviewed

Submitted:

14 June 2018

Posted:

14 June 2018

You are already at the latest version

Alerts
Abstract
In this paper, a new approach is proposed for designing ultra-low-power FFT (Fast Fourier Transform) system suitable for use in energy harvesting powered sensors. Bit-serial architecture is adopted to reduce the power consumption of butterfly operation. Simulation results show that, compared with state-of-the-art bit-serial and conventional parallel processors, the proposed technique is superior in terms of silicon area, power consumption, dynamic energy use due to variable precision arithmetic. A sample design of a 64-point FFT shows that the implementation can save about 40% area and 36% leakage power compared with a conventional parallel counterpart, accordingly achieving significant power benefits at a low sample rate and low voltage domain. The dynamic variation of the arithmetic precision can be achieved through a simple modification of the controller with hardware area overhead of 10% gate count.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated