In the fifth generation communication system, millimeter wave (mmWave) networks will coexist with traditional micro wave (μWave) networks, which allows for higher data transmission rate and better user experience. In this paper, we give a comprehensive framework of mathematical models and analytical methods for multi-tier mmWave and μWave hybrid caching networks based on stochastic geometry. We propose an association strategy by assuming average biased-received power association and Rayleigh fading. Accordingly, by using a D-ball approximating blockage model of mmWave networks, expressions of the cell association probability and the coverage probability of the hybrid networks are derived. Also, we use the average successful delivery probability as the performance metric to analyze the existing caching placement strategies. Simulation results validate the accuracy of our analytical conclusions.
Keywords:
Subject: Engineering - Telecommunications
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.