South Korea proposed reducing greenhouse gas emissions by 37% compared to the expected emissions by 2030 as the POST-2020 greenhouse gas reduction target. Electric vehicle distribution in the public sector is essential to achieve the carbon dioxide reduction target for transportation. In particular, when buses with internal combustion engines, which travel long distances and contribute substantially to greenhouse gas emissions, are replaced with electric buses, it is expected that greenhouse gas emissions will be significantly reduced. There are three types of electric buses with different power supply systems: a plug-in type in which power is supplied when a plug is inserted, a battery-swapping type in which a battery mounted on top of the vehicle is swapped at a swapping station, and a wireless type in which the battery is wirelessly charged through self-induction at a charging facility installed on the road. Vehicles of each charging type have different advantages and disadvantages. The performance, charging type, battery capacity, and operating environment of electric buses are mutually related parameters that must be considered when introducing such vehicles. Therefore, the optimal charging type must be selected according to the operating environment to enable the widespread use of electric buses. As such, this report proposes the optimal charging type according to the operating environment of public-sector electric vehicles.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.