Preprint
Article

Vision-driven collaborative robotic grasping system tele-operated by surface electromyography

Altmetrics

Downloads

381

Views

287

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 June 2018

Posted:

27 June 2018

You are already at the latest version

Alerts
Abstract
This paper presents a system that merges computer vision and surface electromyography techniques to carry out grasping tasks. To perform this, the vision-driven system is used to compute pre-grasping poses of the robotic system based on the analysis of tridimensional object features. Then, the human operator can correct the pre-grasping pose of the robot using surface electromyographic signals from the forearm during wrist flexion and extension. Weak wrist flexions and extensions allow a fine adjustment of the robotic system to grasp the object and finally, when the operator considers that the grasping position is optimal, a strong flexion is performed to initiate the grasping of the object. The system has been tested with several subjects to check its performance showing a grasping accuracy of around 95% of the attempted grasps which increases by around a 9% the grasping accuracy of previous experiments in which electromyographic control was not implemented.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated