A E. Crassipes is considered a problem in different aquatic ecosystems, due to its abundance could become a solution to design and build economic and efficient treatment plants, and especially for the production of biofuels such as bioethanol. The objective of this research is to design and implement a sustainable development process between phytoremediation and bioethanol production with E. crassipes, evaluating the incidence of chromium adhered to the biomass of this plant in the production of bioethanol. Materials and methods: A system was installed to evaluate the phytoremediation with E crassipes with water loaded with chromium, determining the effectiveness of this plant to remove this heavy metal even if it is alive in a body of water. After this process, we proceeded to bring the biomass loaded with chromium to bioreactors to evaluate the production of bioethanol, assessing three types of biomass, one without chromium adhered and the other two with chromium adhered to its plant structure. There was an impact of the ethanol production of the E crassipes due to the presence of chromium, but this production can be taken into account for the assembly of an integral system of phytoremediation and bioethanol production, making the most of this biomass.
Keywords:
Subject: Engineering - Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.