Preprint
Article

Implementation of Regional-CNN and SSD Machine Learning Object Detection Architectures for the Real Time Analysis of Blood Borne Pathogens in Dark Field Microscopy

Altmetrics

Downloads

3922

Views

877

Comments

0

This version is not peer-reviewed

Submitted:

06 July 2018

Posted:

06 July 2018

You are already at the latest version

Alerts
Abstract
The emerging use of visualization techniques in pathology and microbiol- ogy has been accelerated by machine learning (ML) approaches towards image preprocessing, classification, and feature extraction in an increasingly complex series of datasets. Modern Convolutional Neural Network (CNN) architectures have developed into an umbrella of vast image reinforcement and recognition methods, including a combined classification-localization of single/multi-object featured images. As a subtype neural network, CNN cre- ates a rapid order of complexity by initially detecting borderlines, edges, and colours in images for dataset construction, eventually capable in mapping intricate objects and conformities. This paper investigates the disparities between Tensorflow object detection APIs, exclusively, Single Shot Detector (SSD) Mobilenet V1 and the Faster RCNN Inception V2 model, to sample computational drawbacks in accuracy-precision vs. real time visualization capabilities. The situation of rapid ML medical image analysis is theoretically framed in regions with limited access to pathology and disease prevention departments (e.g. 3rd world and impoverished countries). Dark field mi- croscopy datasets of an initial 62 XML-JPG annotated training files were processed under Malaria and Syphilis classes. Model trainings were halted as soon as loss values were regularized and converged.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated