Preprint
Review

Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability

Altmetrics

Downloads

1693

Views

559

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 July 2018

Posted:

13 July 2018

You are already at the latest version

Alerts
Abstract
Many approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of pure drugs and a minimum of surface active agents required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10 and 800 nm. By reducing particle size to nanoscale, the particle surface area available for the molecule dissolution in the direction of dissolution medium is increased, and thus bioavailability is enhanced. This approach has proven successful, as demonstrated by the number of such drug products on the market. R&D and industry have offered many technological solutions to reduce the particle size to nanoscale, and also devised solutions for the handling of particle of nanodimensions, such as methods to accurately measure nanoparticle size and techniques to prevent physicochemical and stability related problems, such as aggregation. The present work provides an overview of the more recent achievements in improving the bioavailability of poorly soluble drugs according to their administration route, and describes the methods developed to overcome physicochemical and stability related problems.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated