Preprint
Article

Design & Manufacture of a High Performance Bicycle Crank by Additive Manufacturing

Altmetrics

Downloads

1597

Views

344

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 July 2018

Posted:

17 July 2018

You are already at the latest version

Alerts
Abstract
Additive Manufacturing (AM) provides an opportunity to fundamentally redesign components previously limited by conventional manufacturing techniques. A new process for this workflow of design, manufacture by Powder Bed Fusion (PBF) and validation is presented, to which a case study of a crank for a high performance racing bicycle is applied. Topology optimisation generated conceptually ideal geometry from which a functional design was interpreted. Design for AM considerations were employed to reduce build time, material usage and post-processing labour. PBF was employed to manufacture the parts, and the build quality assessed using Computed Tomography (CT). Static and dynamic functional testing was performed and compared to a Finite Element Analysis (FEA). CT confirmed good build quality of tall, complex geometry with no significant geometrical deviation from CAD over 0.5 mm. Static testing proved performance close to current market leaders, although failure under fatigue occurred after just 2495 ± 125 cycles, the failure mechanism was consistent in both its form and location. These physical results were representative of those simulated, thus validating the FEA. This research demonstrates a complete workflow from design, manufacture, post-treatment and validation of a highly loaded PBF manufactured component, offering practitioners with a validated approach to the application of PBF.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated