Preprint
Article

No Need for Dark-Matter, Dark-Energy or Inflation, Once Ordinary Matter Is Properly Represented?

Altmetrics

Downloads

690

Views

808

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 January 2019

Posted:

08 January 2019

You are already at the latest version

Alerts
Abstract
In a recent Foundations of Physics paper [5] by the current author it was shown that, when the self-force problem of classical electrodynamics is properly solved, it becomes a plausible ontology underlying the statistical description of quantum mechanics. In the current paper we extend this result, showing that ordinary matter, thus represented, possibly suffices in explaining the outstanding observations currently requiring for this task the contrived notions of dark-matter, dark-energy and inflation. The single mandatory 'fix' to classical electrodynamics, demystifying both very small and very large scale physics, should be contrasted with other adhoc solutions to either problems. Instrumental to our cosmological model is scale covariance (and 'spontaneous breaking' thereof), a formal symmetry of classical electrodynamics treated on equal footing with its Poincare covariance, which is incompatible with the (absolute) metrical attributes of the GR metric tensor.
Keywords: 
Subject: Physical Sciences  -   Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated