Preprint
Article

Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction

Altmetrics

Downloads

326

Views

366

Comments

0

A peer-reviewed article of this preprint also exists.

  * both authors contributed equally to this study

This version is not peer-reviewed

Submitted:

26 July 2018

Posted:

26 July 2018

You are already at the latest version

Alerts
Abstract
Empirical Colebrook equation from 1939 is still accepted as an informal standard to calculate friction factor during the turbulent flow (4000 < Re < 108) through pipes from smooth with almost negligible relative roughness (ε/D→0) to the very rough (up to ε/D = 0.05) inner surface. The Colebrook equation contains flow friction factor λ in implicit logarithmic form where it is, aside of itself; λ, a function of the Reynolds number Re and the relative roughness of inner pipe surface ε/D; λ = f (λ, Re, ε/D). To evaluate the error introduced by many available explicit approximations to the Colebrook equation, λ ≈ f(Re, ε/D), it is necessary to determinate value of the friction factor λ from the Colebrook equation as accurate as possible. The most accurate way to achieve that is using some kind of iterative methods. Usually classical approach also known as simple fixed point method requires up to 8 iterations to achieve the high level of accuracy, but does not require derivatives of the Colebrook function as here presented accelerated Householder’s approach (3rd order, 2nd order: Halley’s and Schröder’s method and 1st order: Newton-Raphson) which needs only 3 to 7 iteration and three-point iterative methods which needs only 1 to 4 iteration to achieve the same high level of accuracy. Strategies how to find derivatives of the Colebrook function in symbolic form, how to avoid use of the derivatives (Secant method) and how to choose optimal starting point for the iterative procedure are shown. Householder’s approach to the Colebrook’s equations expressed through the Lambert W-function is also analyzed. One approximation to the Colebrook equation based on the analysis from the paper with the error of no more than 0.0617% is shown.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated