Preprint
Article

Robust Product Design: A Modern View of Quality Engineering in Manufacturing Systems

Altmetrics

Downloads

2658

Views

786

Comments

1

This version is not peer-reviewed

Submitted:

25 August 2022

Posted:

25 August 2022

You are already at the latest version

Alerts
Abstract
One of the main technological and economic challenges for an engineer is designing high-quality products in manufacturing processes. Most of these processes involve a large number of variables included the setting of controllable (design) and uncontrollable (noise) variables. Robust Design (RD) method uses a collection of mathematical and statistical tools to study a large number of variables in the process with a minimum value of computational cost. Robust design method tries to make high-quality products according to customers’ viewpoints with an acceptable profit margin. This paper aims to provide a brief up-to-date review of the latest development of RD method particularly applied in manufacturing systems. The basic concepts of the quality loss function, orthogonal array, and crossed array design are explained. According to robust design approach, two classifications are presented, first for different types of factors, and second for different types of data. This classification plays an important role in determining the number of necessity replications for experiments and choose the best method for analyzing data. In addition, the combination of RD method with some other optimization methods applied in designing and optimizing of processes are discussed.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated