In plants and animals, endogenous biological molecules, termed damage-associated molecular patterns (DAMPs) or alarmins, are released by damaged, stressed or dying cells following abiotic stress such as radiation and drought stress. In turn, a cascade of downstream signaling events is initiated leading to the up-regulation of defense-related genes. In the present study, in an effort to investigate the conservation status of the molecular mechanisms implicated in the danger signaling, thorough in silico phylogenetic and structural analyses of the effector biomolecules were performed in taxonomically diverse plant species. On the basis of our results, the defense mechanisms appear to be largely conserved within the plant kingdom. Of note is our finding that the sequence and/or function of several components of these mechanisms were found to be conserved in animals, as well.
Keywords:
Subject: Biology and Life Sciences - Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.