Preprint
Article

The AMSU-based Hydrological Bundle Climate Data Record – Description and Comparison with Other Data Sets

Altmetrics

Downloads

351

Views

275

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 July 2018

Posted:

30 July 2018

You are already at the latest version

Alerts
Abstract
Passive microwave measurements have been available on satellites dating back to the 1970s on research satellites flown by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications (e.g., the Special Sensor Microwave/Imager–SSM/I; the Advanced Microwave Sounding Unit–AMSU) and climate applications (e.g., the Advanced Microwave Scanning Radiometer–AMSR; the Tropical Rainfall Measurement Mission Microwave Imager–TMI; the Global Precipitation Mission Microwave Imager–GMI). Here the focus is on measurements from the AMSU-A, AMSU-B and Microwave Humidity Sounder (MHS). These sensors have been in operation since 1998 with the launch of NOAA-15, and are also on board NOAA-16, -17, -18, -19 and the MetOp-A and -B satellites. A data set called the “Hydrological Bundle” is a Climate Data Record (CDR) that utilizes brightness temperatures from Fundamental CDRs to generate Thematic CDRs (TCDR). The TCDR’s include: Total Precipitable Water (TPW), Cloud Liquid Water (CLW), Sea-Ice concentration (SIC), Land surface temperature (LST), Land surface emissivity (LSE) for 23, 31, 50 GHz, rain rate (RR), snow cover (SC), ice water path (IWP), and snow water equivalent (SWE). The TCDR’s are shown to be in general good agreement with similar products from other sources such as the Global Precipitation Climatology Project (GPCP) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Because of the careful intercalibration of the FCDR’s, little bias is found among the different TCDR’s produced from individual NOAA and MetOp satellites, except for normal diurnal cycle differences.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated