Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moire Technique

Version 1 : Received: 3 August 2018 / Approved: 3 August 2018 / Online: 3 August 2018 (12:26:29 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, Q.; Ri, S.; Tsuda, H.; Takashita, Y.; Kitamura, R.; Ogihara, S. Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moiré Technique. Materials 2018, 11, 1684. Wang, Q.; Ri, S.; Tsuda, H.; Takashita, Y.; Kitamura, R.; Ogihara, S. Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moiré Technique. Materials 2018, 11, 1684.

Abstract

The interlaminar shear behavior of a [±45°] laminated carbon fiber reinforced plastic (CFRP) specimen was investigated utilizing microscale strain mapping in a wide field of view. A three-point bending device was developed under a laser scanning microscope, and the full-field strain distributions including normal, shear and principal strains of CFRP in a three-point bending test were measured using a developed sampling Moire technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the -45° layers, visualized from the revised Moire phases and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure.

Keywords

Shear deformation; slippage; delamination; composite materials; strain distribution; Moire method; phase analysis

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.