The main aim of this paper is to explore the issue of big data and to propose a conceptual framework for big data, based on the temporal dimension. The Temporal Big Data Maturity Model (TBDMM) is a means for assessing organization’s readiness to fully profit from big data analysis. It allows the measurement of the current state of the organization’s big data assets and analytical tools, and to plan their future development. The framework explicitly incorporates a time dimension, providing a complete means for assessing also the readiness to process temporal data and/or knowledge that can be found in modern sources, such as big data ones. Temporality in the proposed framework extends and enhances the already existing maturity models for big data. This research paper is based on a critical analysis of literature, as well as creative thinking, and on the case-study approach involving multiple cases. The literature-based research has shown that the existing maturity models for big data do not treat the temporal dimension as the basic one. At the same time, dynamic analytics is crucial for a sustainable competitive advantage. This conceptual framework was well received among practitioners, to whom it has been presented during interviews. The participants in the consultations often expressed their need of temporal big data analytics, and hence the temporal approach of the maturity model was widely welcomed.
Keywords:
Subject: Business, Economics and Management - Business and Management
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.