Preprint
Article

Effect of Energy Balance Evaluation on Conceptual Design of Electric and Hybrid Aircraft

Altmetrics

Downloads

1887

Views

415

Comments

0

This version is not peer-reviewed

Submitted:

22 August 2018

Posted:

22 August 2018

You are already at the latest version

Alerts
Abstract
Nowadays, all the stakeholders, policy makers, regulators, aircraft designers, producers, operators, etc.) are intensively working on development of the aircraft with full electric and hybrid propulsion systems. However, the technical, technological constrains (like limit on accumulator energy density) require introducing a new approach to conceptual design of such aircraft. The new methods is based on energy and mass balance evaluation. This paper analyses the identified constrains; integrates the energy and mass balance equations into the preliminary definition and calculations of the aircraft performance. By this way, the technological constrains might be transferred into the limitation on the aircraft energy and mass breakdown, that initiates a new approach to aircraft conceptual design uses the knowledge based multidisciplinary optimization. The paper describes the developed methodology for conceptual design of aircraft. It show results of implementing this new development philosophy to conceptual design of a four-seat small electric/hybrid aircraft and a special hybrid cargo UAV. The discussion of the results including got by using the emerging and enabling new technologies and new methods and solutions (including for example distributed propulsion system, unconventional forms, morphing, biomimics, etc.), demonstrates the possible implementation of the new development philosophy, new approach to aircraft conceptual design.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated