Preprint
Article

Automatic Fault Detection for Selective Laser Melting Using Semi-Supervised Machine Learning

Altmetrics

Downloads

928

Views

694

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 September 2018

Posted:

18 September 2018

You are already at the latest version

Alerts
Abstract
Risk-averse areas such as the medical, aerospace and energy sectors have been somewhat slow towards accepting and applying Additive Manufacturing (AM) in many of their value chains. This is partly because there are still signi cant uncertainties concerning the quality of AM builds. This paper introduces a machine learning algorithm for the automatic detection of faults in AM products. The approach is semi-supervised in that, during training, it is able to use data from both builds where the resulting components were certi ed and builds where the quality of the resulting components is unknown. This makes the approach cost ecient, particularly in scenarios where part certi cation is costly and time consuming. The study speci cally analyses Selective Laser Melting (SLM) builds. Key features are extracted from large sets of photodiode data, obtained during the building of 49 tensile test bars. Ultimate tensile strength (UTS) tests were then used to categorise each bar as `faulty' or `acceptable'. A fully supervised approach identi ed faulty specimens with a 77% success rate while the semi-supervised approach was able to consistently achieve similar results, despite being trained on a fraction of the available certi cation data. The results show that semi-supervised learning is a promising approach for the automatic certi cation of AM builds that can be implemented at a fraction of the cost currently required.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated