Preprint
Article

Optical Detection of Protrusive Defects on Thin-film Transistor

Altmetrics

Downloads

247

Views

177

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 September 2018

Posted:

24 September 2018

You are already at the latest version

Alerts
Abstract
Protrusive defects on the color filter of thin-film transistor (TFT) liquid crystal displays (LCDs) frequently damage the valuable photomask. An fast method using side-view illuminations associated with digital charge-couple devices (CCDs) to detect the protrusive defect in the four substrates, which are the black matrix (BM), red, green, and blue. Between the photomask and substrate, the depth of field (DOF) is normally 300 μm for the proximity-type aligner; we select the four substrates to evaluate the detectability in the task. The experiment is capable of detecting measurements of 300 μm and even lower than 100 μm can be assessed successfully. The maximum error of the measurement is within 6% among the four samples. Furthermore, the uncertainty analysis of three standard deviations is conducted. Thus, the method is cost-effective to prevent damage for valuable photomasks in the flat panel display industry.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated