Preprint
Hypothesis

Hypothesis and Feasible Mechanism for Appearance of Post-Post-Fe Nuclei in Solar System

Altmetrics

Downloads

660

Views

1028

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 July 2019

Posted:

23 July 2019

You are already at the latest version

Alerts
Abstract
Conventional models do not fully explain composition of the solar system – for example, the presence of p-nuclei and post-post-Fe-nuclei remains not yet understood (and is one of the great unresolved puzzles of nuclear astrophysics in general); other puzzles exist. We offer a hypothesis which can explain the appearance of non-native elements in the solar system, and a feasible scenario for its implementation. The hypothesis suggests that a nuclear-fission "event" occurred in the inner part of the solar system at the time currently defined as the birth of the system. Conventional models have never considered fission as a contributing nuclei-production mechanism. Upon examination of the existing models and factual data (presented in volumes of publications but never combined into an aggregate), we identified one plausible scenario by which a fission event (not demolishing the entire solar system) could occur: an encounter with a compact super-dense stellar "fragment" (with specific properties) and its "explosion" in fission-cascades. Such scenario also helps resolve other long-standing puzzles of the solar system. For example, it provides that the fission-produced nuclei subsequently transformed into the material that (eventually) accreted into the "rocky" objects in the system (terrestrial planets, asteroids, etc.) and enriched the pre-existed hydrogen-helium objects (the Sun and the gaseous giants) – this offers an explanation for the planets’ inner position and compositional differences within the predominantly hydrogen-helium rest of the solar system. Other implications also follow.
Keywords: 
Subject: Physical Sciences  -   Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated