Preprint
Article

Hemodialysis Impact on Motor Function Beyond Aging and Diabetes – Objectively Assessing Gait and Balance by Wearable Technology

Altmetrics

Downloads

336

Views

272

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 September 2018

Posted:

27 September 2018

You are already at the latest version

Alerts
Abstract
Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. To examine whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48-64 years) and older adults (65+ years). One hundred and ninety-six subjects (age=66.2±9.1 years, body-mass-index=30.1±6.4 kg/m2, female=56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n=38) and without HD (Mid-age HD-, n=40); older adults with diabetes undergoing HD (Older HD+, n=36) and without HD (Older HD-, n=37); and non-diabetic older adults (Older DM-, n=45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p<0.050). Among people with diabetes, the HD+ had significantly worsened gait and balance when comparing to the HD- (Cohen’s effect size d=0.63-2.32, p<0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d=2.32, p<0.001). Results suggested that deterioration in gait speed among the HD+ was correlated with age (r=-0.440, p<0.001), while this correlation was diminished among the HD-. Interestingly, results also suggested that poor gait in the Older HD- related to poor balance, while no correlation was observed between poor balance and poor gait among the Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among non-HD people with diabetes, poor static balance described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visits. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated