Preprint
Review

A Review on Fault Current Limiting Devices to Enhance Fault Ride-through Capability of Doubly Fed Induction Generator Based Wind turbine

Altmetrics

Downloads

843

Views

406

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 September 2018

Posted:

27 September 2018

You are already at the latest version

Alerts
Abstract
The Doubly-Fed Induction Generator (DFIG) has significant features in comparison with Fixed Speed Wind Turbine (FSWT), which has popularized its application in power system. Due to partial rated back-to-back converters in the DFIG, Fault Ride-Through (FRT) capability improvement is one of the great subjects regarding new grid code requirements. To enhance the FRT capability of the DFIG, many studies have been carried out. Fault current limiting devices as one of the techniques are utilized to limit the current level and protect switches of the back-to-back converter from over-current damage. In this paper, a review is done based on fault current limiting characteristic of the proposed fault current limiting devices Therefore, Fault Current Limiters (FCLs) and Series Dynamic Braking Resistors (SDBRs) are mainly taken into account. Operation of all configurations including their advantages and disadvantages is explained. Impedance type and the fault current limiting devices’ location are two important factors, which significantly affect the DFIG behaviour in the fault condition. These two factors are basically studied by the simulation and their effects on the key parameters of the DFIG are investigated. Finally, future works in respect to the FCL application in the FRT improvement of the DFIG have also been discussed.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated