Preprint
Article

Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter

Altmetrics

Downloads

2037

Views

316

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 September 2018

Posted:

28 September 2018

You are already at the latest version

Alerts
Abstract
Power converters with coupled inductors are very promising due to the high efficiency and high voltage gain. Apart from the aforementioned advantages, the boost-flyback converter reduces the voltage stress on the semiconductors. However, to obtain good performance with high voltage gains, the controller must include two control loops (current and voltage), and a compensation ramp. One of the most used control techniques for power converters is the peak current-mode control with compensation ramp. However, in the case of a boost-flyback converter there is no mathematical expression in the literature, to compute the slope of the compensation ramp. In this paper, a formula to compute the slope of the compensation ramp is proposed in such a way that a stable period-1 orbit is obtained. This formula is based on the values of the circuit parameters, such as inductances, capacitances, input voltage, switching frequency and includes some assumptions related to internal resistances, output voltages, and some other electrical properties related with the physical construction of the circuit. The formula is verified numerically using the saltation matrix and experimentally using a test circuit.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated