You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Structural, Magnetic and Mossbauer studies of Transition metal doped Gd2Fe16Ga0.5TM0.5 intermetallic compounds (TM=Cr, Mn, Co, Ni, Cu, and Zn)

Altmetrics

Downloads

558

Views

538

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 October 2018

Posted:

04 October 2018

Withdrawn:

Invalid date

Read the latest preprint version here

Alerts
Abstract
The effect of transition metal substitution for Fe and the structural and magnetic properties of Gd2Fe16Ga0.5TM0.5 (TM=Cr, Mn, Co, Ni, Cu, and Zn) compounds were investigated. Rietveld analysis of X-ray diffraction indicates that all the samples crystallize in the hexagonal Th2Ni17 structure. The lattice parameters: a, c and unit cell volume show TM ionic radii dependence. Both Ga and TM atoms show preferred site occupancy for 12j and 12k sites. The saturation magnetization at maximum room temperature was observed for Co, Ni, and Cu of 69, 73, and 77 emu/g, respectively while minimum value was observed for Zn (62emu/g) doping Gd2Fe16Ga0.5TM0.5. Highest Curie temperature of 590 K was observed for Cu doping which is 15% and 5% and thesehigher than Gd2Fe17 and Gd2Fe16Ga compounds, respectively. The hyperfine parameters viz. hyperfine field and isomer shift, show systematic dependence on the TM atomic number. The observed magnetic and Curie temperature behavior in Gd2Fe16Ga0.5TM0.5 is explained on the basis of Fe(3d)-TM(3d) hybridization. The superior Curie temperature and magnetization value of Co, Ni, and Cu doped Gd2Fe16Ga0.5TM0.5 compounds as compared to pure Gd2Fe17 or Gd2Fe16Ga makes Gd2Fe16Ga0.5TM0.5 a potential candidate for high-temperature industrial magnet applications.
Keywords: 
Subject: Chemistry and Materials Science  -   Electronic, Optical and Magnetic Materials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated