Preprint
Article

Anti-Nipah: A QSAR Based Prediction Method to Identify the Inhibitors Against Nipah Virus

Altmetrics

Downloads

422

Views

439

Comments

0

This version is not peer-reviewed

Submitted:

05 October 2018

Posted:

05 October 2018

You are already at the latest version

Alerts
Abstract
Nipah virus (NiV) is responsible to cause various outbreaks in Asian countries, with latest from Kerala state of India. Till date there is no drug available despite its urgent requirement. In the current study, we have provided a computational one-stop solution for NiV inhibitors. We have developed “anti-Nipah” web resource, which comprised of a data repository, prediction method, and data visualization modules. The database comprised of 313 (181 unique) inhibitors from different strains and outbreaks of NiV extracted from research articles and patents. However, the quantitative structure–activity relationship (QSAR) based predictors were accomplished using classification approach employing 10-fold cross validation through support vector machine with 120 (68p + 52n) inhibitors. The overall predictor showed the accuracy and Matthew’s correlation coefficient of 88.89% and 0.77 on training/testing dataset respectively. The independent validation dataset also performed equally well. The data visualization modules from chemical clustering and principal component analyses displayed the diversity in the NiV inhibitors. Therefore, our web platform would be of immense help to the researchers working in developing effective inhibitors against NiV. The user-friendly webserver is freely available on URL: http://bioinfo.imtech.res.in/manojk/antinipah/
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated