Precast concrete sandwich panels (PCSP) are energy efficient building system that is achieved through an insulation layer created between the concrete wythes. The insulation layer is usually of low bearing strength material making it more applicable for non-structural building systems. Hence, shear connectors are introduced to improve its structural capacity, which subsequently degrades it thermal performance by serving as thermal bridges across the panel. This article review researches of alternative materials and methods used to improve the thermal efficiency as well as reduced the strength loss due to insulation in PCSP. The alternative materials are basalt fibre reinforced polymer (BFRP), carbon fibre reinforced polymer (CFRP), glass fibre reinforced polymer (GFRP), and foam concrete which are selected due to their low thermal conductivity for use in shear connection. While thermal path method has been used to prevent the effect of thermal bridges. Although, some of these materials have successfully achieved the desirable behaviours, however, several undesirable properties such as brittleness, bond slip, the sudden crushing of the panel system, and FRP failure below its ultimate strength were observed. Hence, the practicality of the alternative materials is still questionable despite its higher cost compared to the conventional steel and concrete used in the PCSP system.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.