Preprint
Article

Mechanisms of Phase Transformation and Creating Mechanical Strength in a Sustainable Calcium Carbonate Cement

Altmetrics

Downloads

458

Views

480

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

06 May 2020

Posted:

06 May 2020

You are already at the latest version

Alerts
Abstract
Calcium carbonate cements have been synthesized by mixing amorphous calcium carbonate and vaterite powders with water to form a cement paste and study how mechanical strength is created during the setting reaction. In-situ XRD was used to monitor the transformation of ACC and vaterite phases into calcite and a rotational rheometer was used to monitor the strength evolution. There are two characteristic time scales of the strengthening of the cement paste. The short timescale of the order 1 hour is controlled by smoothening of the vaterite grains, allowing closer and therefore adhesive contacts between the grains. The long timescale of the order 10-50 hours is controlled by the phase transformation of vaterite into calcite. This transformation is, unlike in previous studies using stirred reactors, found to be mainly controlled by diffusion in the liquid phase. The evolution of shear strength with solid volume fraction is best explained by a fractal model of the paste structure.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated