Preprint
Article

Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator

Altmetrics

Downloads

302

Views

272

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 October 2018

Posted:

24 October 2018

You are already at the latest version

Alerts
Abstract
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator (RNG). At the same time, it directly determines the extraction ratio of true randomness from the raw data, in other words, it obviously affects quantum random bits generating rate. In this work, we commit to enhancing quantum entropy content in the vacuum noise based quantum RNG. We have taken into account main factors in this proposal to establish the theoretical model of quantum entropy content, including the effects of classical noise, the optimum dynamical analog-digital convertor (ADC) range, the local gain and the electronic gain of the homodyne system. We demonstrate that by amplifying the vacuum quantum noise, abundant quantum entropy is extractable in the step of post-processing even classical noise excursion, which may be deliberately induced by an eavesdropper, is large. Based on the discussion and the fact that the bandwidth of quantum vacuum noise is infinite, we propose large dynamical range and moderate TIA gain to pursue higher local oscillator (LO) amplification of vacuum quadrature and broader detection bandwidth in homodyne system. High true randomness extraction ratio together with high sampling rate is attainable. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the laser power of the LO when classical noise excursions of the raw data is obvious.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated