The importance of detecting bacteria in various food products is ever-increasing, due to recent food trends that lend themselves to food contamination. Additionally, the detection of probiotics in food products is of increasing importance to consumers, who realize the benefits of probiotics on one’s diet. Existing technologies for detection of bacteria in food are accurate, but most are slow, increasingly costly and unsuitable for applications outside of research laboratories. Optic approaches have recently emerged as an alternative, allowing rapid detection of bacterial presence. This study employs a portable kinetics fluorometer, fabricated in-house, in conjunction with NADH sensitive fluorescence reporter for analysis of various food products. The presence of bacteria is detected in 5 minutes. Both pathogenic and probiotic bacteria were detected in food products, such as raw chicken and beef, spoiled lettuce and contaminated water, yogurt, and kombucha tea. The cellular activity of two probiotic pills was also verified. All samples displayed varying levels of bacterial activity. The study indicates the viability of biosensors being used as an alternate method to detect bacteria in food products – and the viability of a fluorescence-based biosensor to detect viable bacteria. The approach is suitable for both laboratory and field determinations.
Keywords:
Subject: Biology and Life Sciences - Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.