Background: Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. beta-lapachone (bL) has been widely used to treat cancer development, but its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast cancer stem cell (BCSC) marker positive cells, MDA-MB-231. Methods: MDA-MB-231 Cells, which is negative for NQO1 expression, was constructed to stably express NQO1(NQO1 stable cells) to see the effect of bL. The effect of bL on cells were evaluated by wound healing and Transwell cell culture chambers, and ALDEFLUOR assay. Results: Here, we show that bL inhibited the proliferative ability of mammosphere derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. bL treatment efficiently downregulated expression level of BCSC markers CD44, ALDH1A1, and DLGAP5 that recently identified as a stem cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulates cell proliferation and migration activities. Conclusions: These results strongly suggest that bL could be a therapeutic agent targeting breast cancer stem cells with proper NQO1 expression.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.