Preprint
Article

TEG Design for Waste Heat Recovery at an Aviation Jet Engine Nozzle

Altmetrics

Downloads

867

Views

290

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 November 2018

Posted:

02 November 2018

You are already at the latest version

Alerts
Abstract
The application of thermoelectric generators (TEG) on the nozzle of an aviation jet engine was studied by finite element TEG-simulations. Against the background of system-level requirements of the reference aircraft this work reports the resulting requirements on the TEG design with respect to applied thermoelectric (TE) element lengths and fill factors (F) within the TE modules in order to maintain a positive effect on the specific fuel consumption. Assuming a virtual optimized TE material and varying the convective heat transfer coefficients at the nozzle surfaces this work reports the achievable power output. System-level requirement on the gravimetric power density (> 100 Wkg-1) can only be met for F ≤ 21%. Extrapolating TEG coverage to the full nozzle surface, the power output reaches 1.65 kW per engine. Assessment of further potential is demonstrated by a parametric study on the fill factor, convective heat transfer coefficients, and materials performance. This study confirms a feasible design range for TEG installation on the aircraft nozzle with a positive impact on the fuel consumption. This application translates into a reduction of operational costs, allowing for an economically efficient installation of TEG in consideration of the cost-specific power output of modern thermoelectric materials.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated