The purpose of work is to quantify the changes of the organism functional reserves during the successive phases of the human health Space-Time Continuum (STC) on the basis of postulates of reliability complex systems theory. The study is devoted to the problem of age-related human involution, which is evaluated not from the causal, but from the kinetic point of view. The analysis of 10 most important basic life support systems of human body — cardiovascular (CVS), respiratory (RS), nervous (NS), digestive (DS), endocrine (ES), immune (IS), excretory (EXS), brain (BS), musculo-skeletal (MSS), hematopoietic (HS) was carried out. Based on this analysis two levels of ensuring the reliability of organism’s work were revealed: sequential and parallel. The system of logical equations for reduced sequential system is: Ys1 = CVS ∧ RS ∧ BS, where ∧ is the notation for the conjunctions of set elements. The system of logical equations for the reduced parallel system is: Ys2 = NS ∨ DS ∨ ES ∨ IS ∨ HS ∨ EXS ∨ MSS ,where ∨ is the disjunction of the scheme elements. Visualization of human STC changes the concept of the kinetics of age-related changes in the organism and the role of determinants of health as a stable factor accompanying a uniform, smooth transition from the most pronounced functions of the body to their gradual extinction. For human STC is formulated the following regularity kinetics of involutionary processes: after 30 years of age in the human body morphological changes regress in arithmetic progression, and the functions of organs in a geometric one. Assumption of health as a state redundancy of functions is suggested.
Keywords:
Subject: Medicine and Pharmacology - Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.