Preprint
Article

Cell-Based Fish: A Novel Approach to Seafood Production and an Opportunity for Cellular Agriculture

Altmetrics

Downloads

1690

Views

3299

Comments

0

Submitted:

24 January 2019

Posted:

25 January 2019

You are already at the latest version

Alerts
Abstract
Cellular agriculture is defined as the production of agricultural products from cell cultures rather than from whole plants or animals. With growing interest in cellular agriculture as a means to address the public health, environmental, and animal welfare challenges of animal agriculture, the concept of producing seafood from fish cell- and tissue-cultures is emerging as a means to address similar challenges with industrial aquaculture systems and marine capture. Cell-based seafood - as opposed to animal-based seafood - can combine developments in biomedical engineering with modern aquaculture techniques. Biomedical engineering developments such as closed-system bioreactor production of land animal cells create a basis for large scale production of marine animal cells. Aquaculture techniques such as genetic modification and closed system aquaculture have achieved marked gains in production that can pave the way for innovations in cell-based seafood production. Here, we present the current state of innovation relevant to the development of cell-based seafood across multiple species as well as specific opportunities and challenges that exist for advancing this science. The authors find that the physiological properties of fish cell- and tissue- culture may be uniquely suited to cultivation in vitro. These physiological properties, including hypoxia tolerance, high buffering capacity, and low-temperature growth conditions, make marine cell culture an attractive opportunity for scale production of cell-based seafood; perhaps even more so than mammalian and avian cell cultures for cell-based meats. This, coupled with the unique capabilities of crustacean tissue-friendly scaffolding such as chitosan, a common seafood waste product and mushroom derivative, presents great promise for cell-based seafood production via bioreactor cultivation. To become fully realized, cell-based seafood research will require more understanding of fish muscle culture and cultivation; more investigation into serum-free media formulations optimized for fish cell culture; and bioreactor designs tuned to the needs of fish cells for large scale production.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated