Preprint
Article

HOLMeS: eHealth in the Big Data and Deep Learning Era

Altmetrics

Downloads

415

Views

207

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 November 2018

Posted:

15 November 2018

You are already at the latest version

Alerts
Abstract
Data collection and analysis are becoming more and more important in a variety of application domains as long as the novel technologies advance. At the same time, we are experiencing a growing need for human-machine interaction with expert systems pushing research through new knowledge representation models and interaction paradigms. In particular, in the last years eHealth - that indicates all the health-care practices supported by electronic elaboration and remote communications - calls for the availability of smart environment and big computational resources. The aim of this paper is to introduce the HOLMeS (Health On-Line Medical Suggestions) framework. The introduced system proposes to change the eHealth paradigm where a trained machine learning algorithm, deployed on a cluster-computing environment, provides medical suggestion via both chat-bot and web-app modules. The chat-bot, based on deep learning approaches, is able to overcome the limitation of biased interaction between users and software, exhibiting a human-like behavior. Results demonstrate the effectiveness of the machine learning algorithms showing 74.65% of Area Under ROC Curve (AUC) when first-level features are used to assess the occurrence of different prevention pathways. When disease-specific features are added, HOLMeS shows 86.78% of AUC achieving a more specific prevention pathway evaluation.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated