Preprint
Article

Conjugate Heat Transfer Characteristics in a Highly Thermally Loaded Film Cooling Configuration with TBC in Syngas

Altmetrics

Downloads

304

Views

130

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 November 2018

Posted:

15 November 2018

You are already at the latest version

Alerts
Abstract
The future power equipment tends to take hydrogen or middle/low heat-value syngas as fuel for low emission. The heat transfer of film cooled turbine blade shall be influenced more by radiation. Its characteristic of conjugate heat transfer is studied experimentally and numerically in the paper by considering radiation heat transfer, multi-composition gas and TBC. The Weighted Sum of Gray Gases spectral model and Discrete Transfer Model are utilized to solve the radiative heat transfer in the multi-composition field, while validated against the experimental data for the studied cases. It is shown that the plate temperature increases significantly when considering the radiation and the temperature gradient of the film cooled plate becomes larger. It is also shown that increasing percentage of steam in gas composition results in increased temperature on the film-cooled plate. The normalized temperature of the film-cooled plate decreases about 0.02, as the total percentage of steam in hot gas increases per 7%. As for the TBC effect, it can smooth out the the temperature distribution and insulate the heat to a greater extent when the radiative heat transfer becomes significant.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated