Preprint
Communication

Catalytic Hot Gas Filtration for Tailoring Vapor-Phase Chemistry of Fast Pyrolysis Bio-Oils

Altmetrics

Downloads

291

Views

252

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 November 2018

Posted:

16 November 2018

You are already at the latest version

Alerts
Abstract
Carboxylic acids such as acetic acid and propionic acid have been investigated as representative components for fast pyrolysis (FP) bio-oil upgrading. Selective catalytic conversion of carboxylic acids can enhance bio-refinery processing economics through catalyst preservation and process intensification. Various metal-doped molybdenum carbide bead catalysts have been synthesized and developed in this work. Our aim is to enable selective conversion of carboxylic acids. In the case of acetic acid conversion, calcium doped Mo2C beads offer the highest yield of acetone ~96% at 450 °C among undoped and Ca or Ni doped catalysts. By comparing hot gas filter with and without Ca-Mo2C catalyst tested with real FP vapors, the former showed a 36.7% reduction of acetic acid, a 37.5% reduction of small ketones in aqueous phase, and a ~50% reduction of methoxies (methoxy phenols and methoxy aromatics) in organic phase. The conversion resulted in the formation of more long chain chemicals in the organic phase, which are more amendable for downstream upgrading.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated