Preprint
Article

Impact of Subsoiling and Sowing Time on Soil Water Content and Contribution of Nitrogen Translocation to Grain and Yield of Dryland Winter Wheat

Altmetrics

Downloads

312

Views

239

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

18 November 2018

Posted:

21 November 2018

You are already at the latest version

Alerts
Abstract
Dryland winter wheat in Loess Plateau is facing yield reduction due to shortage of soil moisture and delayed sowing time. Field experiment was conducted at Loess Plateau in Shanxi Province, China from 2012 to 2014, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage and contribution of N accumulation and remobilization to yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage at 0-300 cm depth, improved the number of tillers and pre-anthesis N translocation in various organs of wheat and post-anthesis N accumulation, eventually increased the yield up to 17-36%. Delaying sowing time had reduced the soil water storage at sowing and winter accumulated temperature by about 180˚C. The contribution of N translocation to grain yield was maximum in glume+spike followed by in leaves and minimum by stem+sheath. In addition a close relationship was found between the N accumulation and translocation and the soil moisture in the 20-300 cm. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in dry year.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated