Preprint
Article

Uniform Convergence of Cesaro Averages for Uniquely Ergodic $C^*$-Dynamical Systems

Altmetrics

Downloads

533

Views

262

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 November 2018

Posted:

22 November 2018

You are already at the latest version

Alerts
Abstract
Consider a uniquely ergodic $C^*$-dynamical system ba\-sed on a unital $*$-endomorphism $\Phi$ of a $C^*$-algebra. We prove the uniform convergence of Cesaro averages $\frac1{n}\sum_{k=0}^{n-1}\lambda^{-n}\Phi(a)$ for all values $\lambda$ in the unit circle which are not eigenvalues corresponding to "measurable non continuous" eigenfunctions. This result generalises the analogous one in commutative ergodic theory presented in [19], which turns out to be a combination of the Wiener-Wintner Theorem (cf. [22]) and the uniformly convergent ergodic theorem of Krylov and Bogolioubov (cf. [15]).
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated