It is a common practice to detect outliers in a financial time series in order to avoid the adverse effect of additive outliers. This paper investigated the performance of GARCH family models (sGARCH; gjrGARCH; iGARCH; TGARCH and NGARCH) in the presence of different sizes of outliers (small, medium and large) for different time series lengths (250, 500, 750, 1000, 1250 and 1500) using root mean square error (RMSE) and mean absolute error (MAE) to adjudge the models. In a simulation iteration of 1000 times in R environment using rugarch package, results revealed that for small size of outliers, irrespective of the length of time series, iGARCH dominated, for medium size of outliers, it was sGARCH and gjrGARCH that dominated irrespective of time series length, while for large size of outliers, irrespective of time series length, gjrGARCH dominated. The study further leveled that in the presence of additive outliers on time series analysis, both RMSE and MAE increased as the time series length increased.
Keywords:
Subject: Computer Science and Mathematics - Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.