Preprint
Article

A Non-Artificial Setting Method for Fault Feeder Detection Systems Based on Data Fusion Used in Resonant Grounding Systems

Altmetrics

Downloads

278

Views

208

Comments

0

Submitted:

29 November 2018

Posted:

30 November 2018

You are already at the latest version

Alerts
Abstract
Fault line detection timely and accurately when single-phase-to-earth fault occurs in resonant grounding system is still a focus of research. This paper presents a new approach for fault detection based on data fusion and it has non-artificial setting. Firstly, the fault criterion for interphase difference energy ratio and time-frequency correlation coefficient of each line is proposed. Subsequently, the paper establish a coordinate system with the interphase difference energy ratio as X axis and the time-frequency correlation coefficient as Y axis, and it uses the Euclidean distance algorithm to get the characteristic distance of each line by fusing two-dimensional information. Finally, comparing the sound distance and the fault distance of each line to discriminate the fault line. Electromagnetic Transients Program (EMTP) simulation results and adaptability analysis have confirmed the effectiveness and reliability of the proposed scheme.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated