Five fundamental problems—neutrino mass, baryogenesis, dark matter, inflation, strong CP problem—are solved at one stroke in a model, dubbed as “SM-A-S-H” (Standard Model-Axion-Seesaw-Higgs portal inflation) by Andreas Ringwald et. al. The Standard Model (SM) particle content is extended by three right-handed SM-singlet neutrinos $N_i$, a vector-like color triplet quark $Q$, a complex SM-singlet scalar field $\sigma$ that stabilises the Higgs potential, all of them being charged under Peccei-Quinn (PQ) $U(1)$ symmetry, the vacuum expectation value $v_\sigma\sim10^{11}$ GeV breaks the lepton number and the Peccei-Quinn symmetry simultaneously. We found that numerically SMASH model not only solves five fundamental problems but also the sixth problem “Vacuum Metastability” through the extended scalar sector and can predict approximately correct atmospheric neutrino mass splitting around 0.05 eV and the solar neutrino mass splitting around 0.009 eV.
Keywords:
Subject: Physical Sciences - Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.