You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Highly Selective Copper Ion Imprinted Clay/Polymer Nanocomposites Designed by Visible Light Radical Photopolymerization

Altmetrics

Downloads

366

Views

369

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 December 2018

Posted:

10 December 2018

Withdrawn:

Invalid date

You are already at the latest version

Alerts
Abstract
There is an urgent demand worldwide for the development of highly selective adsorbents and sensors of heavy metal ions and other organic pollutants. Within these environmental and public health frameworks, we are combining the salient features of clays and chelatant polymers to design selective metal ion adsorbents. Towards this end, the ion imprinting approach has been used to develop a novel nanohybrid material for the selective separation of Cu2+ ions in aqueous solution. The Cu2+-imprinted polymer/ montmorillonite nanocomposite (IIP/Mt) and non-imprinted polymer/montmorillonite nanocomposite (NIP/Mt) were prepared by radical photopolymerization process in the visible light. Ion imprinting was indeed important as the recognition of copper ions by IIP/Mt was significantly superior to that of NIP/Mt that is the nanocomposite synthesized in the same way but in the absence of Cu2+ ions. The adsorption process as batch study was investigated under the experimental condition affecting same parameters such as contact time, concentration of ions metals and pH. The adsorption capacity of Cu2+ ions is maximized at pH 5. Removal of Cu2+ ion achieved equilibrium within 15 minutes; the results obtained were found to be fitted by the pseudo-second order kinetics model. The equilibrium process was well described by the Langmuir isothermal model and the maximum adsorption capacity was found to be 23.6 mg/g.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated