Focal cerebral ischemia can lead to blood-brain barrier (BBB) breakdown, which is implicated in neuroinflammation and elevation of matrix metalloproteinases (MMPs). The role of the anti-inflammatory protein, monocyte chemotactic protein–induced protein 1 (MCPIP1) plays in the injury of BBB in stroke has not yet been reported. This study was conducted to identify and characterize the role MCPIP1 plays in BBB breakdown. Transient middle cerebral artery occlusion (MCAO) is induced in both wild-type and Mcpip1-/- mice for 2 hours of occlusion periods followed by reperfusion for 24 or 48 hours. BBB permeability was measured by FITC-dextran extravasation, MMP-9/3 expression was analyzed by western blot, and claudin-5 and zonula occludens-1 (ZO-1) were analyzed by immunohistochemistry and western blot. After MCAO in wild type mouse is induced, there is significantly increase in MCPIP1 mRNA and protein levels. Absence of MCPIP1 leaded to significant increase in FITC-dextran leakage in peri-infarct brain, significant upregulation of MMP-9, MMP-3 and reduced levels of tight junction components, claudin-5 and ZO-1 in the brain after MCAO. Our data demonstrate that absence of MCPIP1 exacerbates ischemia-induced blood-brain barrier disruption by enhancing the expression of matrix metalloproteinases and degradation of tight junction proteins. Overall data indicate that MCPIP1 is important protective role against BBB disruption in cerebral ischemia.
Keywords:
Subject: Biology and Life Sciences - Neuroscience and Neurology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.