Preprint
Article

In-situ Mechanical Characterization of Mixed-Mode Fracture Strength of Cu/Si Interface for TSV Structures

Altmetrics

Downloads

246

Views

218

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 December 2018

Posted:

17 December 2018

You are already at the latest version

Alerts
Abstract
In-situ nanoindentation experiment has been widely adopted to characterize material behaviors of microelectronic devices. This work introduces the latest developments of nanoindentation experiment in characterizing nonlinear material properties of 3D integrated microelectronic devices with through-silicon-vias (TSVs). The elastic, plastic, and interfacial fracture behavior of the copper via and matrix-via interface have been characterized using small scale specimens prepared with focused-ion-beam (FIB) and nanoindentation experiment. A brittle interfacial fracture was found at the Cu/Si interface under mixed-mode loading with a phase angle ranging from 16.7 to 83.7 degrees. The mixed-mode fracture strengths were extracted using the linear elastic fracture mechanics (LEFM) analysis and a fracture criterion was obtained by fitting the extracted data with the power-law function. The vectorial interfacial strength and toughness were found to be independent with mode-mix.
Keywords: 
Subject: Physical Sciences  -   Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated